Module 2:
 Central tendency, shape, and difference in means

MSIR 525

Monday, September 23, 2019

Recap of Module 1 (check list from syllabus; see pages 1-2)

- We learned about the NHST framework
- We developed an understanding of p-values and how they can be used to inform evidence-based management decisions
- We compared different types of error that can threaten our inferences and conclusions
- We also learned how one can attempt to avoid these errors and disclosures that must be given if a study is underpowered
- We contrasted three different research designs (e.g. observational) and two different data collection approaches (e.g., longitudinal)
- We learned about different data sources and data types
- We summarized several types of validity and phenomena that may threaten them

Agenda for Module 2

- 9/23/2019
- Summarizing data (frequency distributions); fitting data (central tendency and shape); interpretation and communication; issues in datasets

Agenda for Module 2

- 9/23/2019
- Summarizing data (frequency distributions); fitting data (central tendency and shape); interpretation and communication; issues in datasets
- 9/25/2019
- Assess whether or not two means are *statistically* different from each other (i.e., a t-test)

Agenda for Module 2

- 9/23/2019
- Summarizing data (frequency distributions); fitting data (central tendency and shape); interpretation and communication; issues in datasets
- 9/25/2019
- Assess whether or not two means are *statistically* different from each other (i.e., a t-test)
- 9/30/2019
- Assess whether or not multiple means are *statistically* different from each other (i.e., ANOVA test)

Agenda for Module 2

- 9/23/2019
- Summarizing data (frequency distributions); fitting data (central tendency and shape); interpretation and communication; issues in datasets
- 9/25/2019
- Assess whether or not two means are *statistically* different from each other (i.e., a t-test)
- 9/30/2019
- Assess whether or not multiple means are *statistically* different from each other (i.e., ANOVA test)
- 10/2/2019
- Module 2 recap and software tutorial (R must be installed by this date!!)

Agenda for Module 2

- 9/23/2019
- Summarizing data (frequency distributions); fitting data (central tendency and shape); interpretation and communication; issues in datasets
- 9/25/2019
- Assess whether or not two means are *statistically* different from each other (i.e., a t-test)
- 9/30/2019
- Assess whether or not multiple means are *statistically* different from each other (i.e., ANOVA test)
- 10/2/2019
- Module 2 recap and software tutorial (R must be installed by this date!!)
- 10/7/2019
- In-class exercise for credit (i.e., a hackathon)
- Applying what we learned in M2 to ascertain whether or not a meaningful group difference exists

Agenda for Module 2

- Let's get started! ©

Summarizing Data

- Frequency distribution

Summarizing Data

- Frequency distribution
- A table or graph that shows each possible score along with the number of times that score was observed in the data.

Summarizing Data

- Frequency distribution
- A table or graph that shows each possible score along with the number of times that score was observed in the data.

Table 1. Observed Data			
Stress	WLB	Sob	Pasfaction
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Summarizing Data

- Frequency distribution

- A table or graph that shows each possible score along with the number of times that score was observed in the data.

Table 1. Observed Data			
Stress	WLB	sab	Patisfaction
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Rating	Stress	WLB	Job satisfaction	Pay satisfaction
10	0	0	0	3
9	0	0	0	0
8	0	2	1	0
7	3	0	3	2
6	2	0	0	2
5	2	1	0	0
4	0	1	2	0
3	0	0	1	0
2	0	3	0	0
1	0	0	0	0
0	0	0	0	0
Count	7	7	7	7

Summarizing Data

- Frequency distribution
- A table or graph that shows each possible score along with the number of times that score was observed in the data.

Table 1. Observed Data			
Stress	WLB	satisfaction	satisfaction
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Summarizing Data

- Frequency distribution
- A table or graph that shows each possible score along with the number of times that score was observed in the data.

Table 1. Observed Data			
Stress	WLB	satisfaction	satisfaction
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Summarizing Data

- Relative frequency
- Compared to the (raw) frequency itself, this is a way to make even better sense of observed data

Summarizing Data

- Relative frequency
- Compared to the (raw) frequency itself, this is a way to make even better sense of observed data
- Represents how often a response is observe relative to the total number of responses
- "What proportion of the respondents gave a rating of 7 for stress?"

Summarizing Data

- Relative frequency
- Compared to the (raw) frequency itself, this is a way to make even better sense of observed data
- Represents how often a response is observe relative to the total number of responses
- "What proportion of the respondents gave a rating of 7 for stress?"

$$
\text { Relative frequency }=\frac{\text { frequency of response }}{\text { total number of responses }}
$$

Summarizing Data

- Relative frequency
- Compared to the (raw) frequency itself, this is a way to make even better sense of observed data
- Represents how often a response is observe relative to the total number of responses
- "What proportion of the respondents gave a rating of 7 for stress?"

$$
\begin{aligned}
\text { Relative frequency } & =\frac{\text { frequency of response }}{\text { total number of responses }} \\
& =\frac{3}{7}=43 \%
\end{aligned}
$$

Summarizing Data

- Cumulative frequency and cumulative percentage
- An assessment of the total frequency (percentage) of all categories up to and including the category of interest

Summarizing Data

- Cumulative frequency and cumulative percentage

- An assessment of the total frequency (percentage) of all categories up to and including the category of interest

Table 3. Frequency Distributions for Stress								
	Relative Rating					Frequency	Cumulative	Cumulative
frequency	frequency	percentage						
10	0	$0(0 \%)$	7	$1.0(100 \%)$				
9	0	$0(0 \%)$	7	$1.0(100 \%)$				
8	0	$0(0 \%)$	7	$1.0(100 \%)$				
7	3	$.43(43 \%)$	7	$1.0(100 \%)$				
6	2	$29(29 \%)$	4	$.58(58 \%)$				
5	2	$.29(29 \%)$	2	$.29(29 \%)$				
4	0	$0(0 \%)$	0	$0(0 \%)$				
3	0	$0(0 \%)$	0	$0(0 \%)$				
2	0	$0(0 \%)$	0	$0(0 \%)$				
1	0	$0(0 \%)$	0	$0(0 \%)$				
0	0	$0(0 \%)$	0	$0(0 \%)$				

Summarizing Data

- Cumulative frequency and cumulative percentage

- An assessment of the total frequency (percentage) of all categories up to and including the category of interest

Rating	Frequency	Relative frequency	Cumulative frequency	Cumulative percentage
10	0	0 (0\%)	7	1.0 (100\%)
9	0	0 (0\%)	7	1.0 (100\%)
8	0	0 (0\%)	7	1.0 (100\%)
7	3	. 43 (43\%)	7	1.0 (100\%)
6	2	29 (29\%)	4	. 58 (58\%)
5	2	. 29 (29\%)	2	. 29 (29\%)
4	0	0 (0\%)	0	0 (0\%)
3	0	0 (0\%)	0	0 (0\%)
2	0	0 (0\%)	0	0 (0\%)
1	0	0 (0\%)	0	0 (0\%)
0	0	0 (0\%)	0	0 (0\%)

Summarizing Data

- Mean (or median) splits
- A method used to estimate the number of "high" vs. "low" responses observed in a dataset

Summarizing Data

- Mean (or median) splits
- A method used to estimate the number of "high" vs. "low" responses observed in a dataset
- Example: How many people have "high" and "low" levels of job satisfaction?

Summarizing Data

- Mean (or median) splits
- A method used to estimate the number of "high" vs. "low" responses observed in a dataset
- Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data			
Stress	WLB	sabisfaction	Patisfaction
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Summarizing Data

- Mean (or median) splits
- A method used to estimate the number of "high" vs. "low" responses observed in a dataset
- Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data			
Stress	WLB	satisfaction	Patisfaction
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Step 1: Calculate column mean (average)
Average job satisfaction rating $=\frac{7+7+7+8+3+4+4}{7}=5.71$

Summarizing Data

- Mean (or median) splits
- A method used to estimate the number of "high" vs. "low" responses observed in a dataset
- Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data			
Stress	WLB	Job	Patisfaction
6	2	8	6
5	8	7	9
5	8	7	9
6	2	7	9
7	4	4	7
7	5	4	7
7	2	3	6

Step 1: Calculate column mean (average)
Average job satisfaction rating $=\frac{7+7+7+8+3+4+4}{7}=5.71$
Step 2: Rearrange observed data (largest \rightarrow smallest)

Summarizing Data

- Mean (or median) splits
- A method used to estimate the number of "high" vs. "low" responses observed in a dataset
- Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data			
Stress	WLB	Job	Patisfaction
6	2	8	6
5	8	7	9
5	8	7	9
6	2	7	9
7	4	4	7
7	5	4	7
7	2	3	6

Step 1: Calculate column mean (average)
Average job satisfaction rating $=\frac{7+7+7+8+3+4+4}{7}=5.71$
Step 2: Rearrange observed data (largest \rightarrow smallest)
Step 3: Identify "high" (i.e., > 5.71) vs. "low" (i.e., < 5.71) scores

Summarizing Data

- Mean (or median) splits
- A method used to estimate the number of "high" vs. "low" responses observed in a dataset
- Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data			
		Job	Pay
Stress	WLB	satisfaction	satisfaction
6	2	8	6
5	8	7	9
5	8	7	9
6	2	7	9
7	4	4	7
7	5	4	7
7	2	3	6

Step 1: Calculate column mean (average)
Average job satisfaction rating $=\frac{7+7+7+8+3+4+4}{7}=5.71$
Step 2: Rearrange observed data (largest \rightarrow smallest)
Step 3: Identify "high" (i.e., > 5.71) vs. "low" (i.e., < 5.71) scores
Step 4: Calculate "high" vs. "low" frequencies and percentages

Summarizing Data

- Mean (or median) splits

4 out 7 ="high" scores
$4 / 7=.57(57 \%)$

3 out 7 ="low" scores

3/7 = . 43 (43\%)

- A method used to estimate the number of "high" vs. "low" responses observed in a dataset
- Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data			
Stress	WLB	Job	Patisfaction
6	2	8	6
5	8	7	9
5	8	7	9
6	2	7	9
7	4	4	7
7	5	4	7
7	2	3	6

Step 1: Calculate column mean (average)
Average job satisfaction rating $=\frac{7+7+7+8+3+4+4}{7}=5.71$
Step 2: Rearrange observed data (largest \rightarrow smallest)
Step 3: Identify "high" (i.e., > 5.71) vs. "low" (i.e., < 5.71) scores
Step 4: Calculate "high" vs. "low" frequencies and percentages

Central tendency

- Mean, median, mode

Central tendency

- Mean, median, mode
- Represents a simple statistical model of the center of the distribution of scores.
- A hypothetical estimate of the "typical" score

Table 1. Observed Data			
Stress	WLB	Satisfaction	Patisfaction
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Calculate column mean (average)
Average job satisfaction rating $=\frac{7+7+7+8+3+4+4}{7}=5.71$

Central tendency

- Mean, median, mode
- Represents the middle score of a set of ordered observations
- When there is an even number of observations the median is the average of the two scores that fall either side of what would be the middle value

Table 1. Observed Data			
Stress	WLB	satisfaction	Pay
7	2	3	6
7	4	4	7
7	5	4	7
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6

Central tendency

- Mean, median, mode
- Represents the middle score of a set of ordered observations
- When there is an even number of observations the median is the average of the two scores that fall either side of what would be the middle value

Table 1. Observed Data			
Stress	WLB	satisfaction	Patisfaction
7	2	3	6
7	4	4	7
7	5	4	7
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6

Table 1. Observed Data			
Stress	WLB	sabisfaction	Pay
5	8	7	satisfaction
5	8	7	9
6	2	7	Ordered
from low-	9		
6	2	8	
to-high	6		
7	2	3	6
7	4	4	7
7	5	$4 \downarrow$	7

Central tendency

- Mean, median, mode
- Represents the middle score of a set of ordered observations
- When there is an even number of observations the median is the average of the two scores that fall either side of what would be the middle value

Table 1. Observed Data			
Job			
Stress	WLB	satisfaction	satisfaction
7	2	3	s.
7	4	4	6
7	5	4	7
5	8	7	Ordered
from low-	7		
5	8	7	to-high
6	2	7	9
6	2	8	9

Central tendency

- Mean, median, mode
- Represents the middle score of a set of ordered observations
- When there is an even number of observations the median is the average of the two scores that fall either side of what would be the middle value

Calculate column median (mid-point of distribution)
Median job satisfaction rating $=7$

Central tendency

- Mean, median, mode
- Represents the middle score of a set of ordered observations
- When there is an even number of observations the median is the average of the two scores that fall either side of what would be the middle value

Calculate column median (mid-point of distribution)
Median job satisfaction rating $=7$

Central tendency

- Mean, median, mode
- Represents the most frequently occurring score in a set of observations
- Can be bi-modal or even multi-modal

Table 1. Observed Data			
Stress	WLB	sabisfaction	Patisfaction
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Central tendency

- Mean, median, mode
- Represents the most frequently occurring score in a set of observations
- Can be bi-modal or even multi-modal

Table 1. Observed Data			
Job Stress			
WLB	satisfaction	Pay	
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Calculate column mode

Modal job satisfaction rating $=7$

MOTIVITIOMI

The point is...

- Although we know about these measures of central tendency, we may not be using them to their full potential
- Many of the descriptive statistics that we aware of (e.g., mean) are meaningless if they are not reported in tandem with other important information
- What other important information should accompany the mean...

Variance

- Standard deviation
- SD is an estimate of the average variability (spread) of a set of observations around the mean
- Importantly, SD is expressed in the same units of measurement as the raw scores
- It is the square root of the variance (sqrt[sum of squares/number of values])

Variance

- Range
- The range of scores is the value of the smallest score subtracted from the highest score

Table 1. Observed Data			
Stress	WLB	satisfaction	Patisfaction
7	2	3	6
7	4	4	7
7	5	4	7
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6

Range $=\quad$ Highest score - lowest score
$=8-3$
$=5$

Shape

- Skewness
- Kurtosis

Shape

- Skewness \rightarrow a measure of the symmetry of a frequency distribution
- Kurtosis

Shape

- Skewness \rightarrow a measure of the symmetry of a frequency distribution
- Kurtosis

Symmetrical distributions have a skew of 0

Shape

- Skewness \rightarrow a measure of the symmetry of a frequency distribution
- Kurtosis

Positive
Skew

Symmetrical distributions have a skew of 0

When the frequent scores are clustered at the lower end of the distribution and the tail points to the higher (more positive) scores, the value of skew is positive

Shape

- Skewness \rightarrow a measure of the symmetry of a frequency distribution

- Kurtosis

Shape

- Skewness \rightarrow a measure of the symmetry of a frequency distribution

Shape

- Skewness
- Kurtosis \rightarrow a measure of the degree

Normal kurtosis $=3$

Shape

- Skewness
- Kurtosis \rightarrow a measure of the degree

Normal kurtosis = 3

$$
\text { Kurtosis < } 3 \rightarrow \text { Platykurtic }
$$

(the distribution produces fewer and less extreme values [e.g., outliers] than does the normal distribution)

Shape

- Skewness
- Kurtosis \rightarrow a measure of the degree

Normal kurtosis = 3

Kurtosis $<3 \rightarrow$ Platykurtic
(the distribution produces fewer and less extreme values [e.g., outliers] than does the normal distribution)

Kurtosis > $3 \rightarrow$ Leptokurtic (this distribution produces more extreme values [e.g., outliers] than the normal distribution)

Threats to descriptive statistics

- Missing data
- Outliers
- Range restriction

Threats to descriptive statistics

- Missing data
- Outliers
- Range restriction

> | 1. Missing Completely at Random (MCAR) |
| :--- |
| 2. Missing at Random (MAR) |
| 3. Missing Not at Random (MNAR; this type |
| of missingness cannot be ignored) |
| See |
| $\frac{\text { https://www.theanalysisfactor.com/missing }}{\text {-data-mechanism/ for an explanation of }}$ |
| each type of missing data. |

Interpreting descriptive statistics

- As previously mentioned, descriptive statistics should be reported in tandem with other descriptive statistics

Interpreting descriptive statistics

- As previously mentioned, descriptive statistics should be reported in tandem with other descriptive statistics
- The mean is not informative without reporting the corresponding SD
- The raw frequency is not informative without reporting the corresponding relative frequency
- Etc.

Interpreting descriptive statistics

- As previously mentioned, descriptive statistics should be reported in tandem with other descriptive statistics
- The mean is not informative without reporting the corresponding SD
- The raw frequency is not informative without reporting the corresponding relative frequency
- Etc.
- Descriptive statistics are the gateway to more sophisticated, in-depth analyses
- Imagine that you observe low levels of job satisfaction among female employees. The next question that might need to be addressed is, "Why are females experiencing low levels of job satisfaction?"

Comparing means

- t-test
- A t-test is a type of inferential statistic used to determine if there is a significant difference between the means of two groups, which may be related in certain features.

Comparing means

- t-test
- A t-test is a type of inferential statistic used to determine if there is a significant difference between the means of two groups, which may be related in certain features.
- Essentially, a t-test allows us to compare the average values of the two data sets and determine if they came from the same population.

Comparing means

- t-test
- Remember Module 1 and NHST? What does the null hypothesis propose for a t-test?

Null hypothesis:
A statistical test of the hypothesis that
suggests that there is no difference
between specified populations (or no
relation between constructs) and that
any observed difference is due to
sampling or experimenter error.
$r=0$

Comparing means

- t-test
- Remember Module 1 and NHST? What does the null hypothesis propose for a t-test?

Null hypothesis:
A statistical test of the hypothesis that
suggests that there is no difference
between specified populations (or no
relation between constructs) and that
any observed difference is due to
sampling or experimenter error.
$r=0$

Null hypothesis:
There is no relation between emotional exhaustion and turnover behavior
Emotional exhaustion \rightarrow Turnover
$r=0$

Comparing means

- t-test
- Remember Module 1 and NHST? What does the null hypothesis propose for a t-test?

Null hypothesis:
A statistical test of the hypothesis that
suggests that there is no difference
between specified populations (or no
relation between constructs) and that
any observed difference is due to
sampling or experimenter error.
$r=0$

here is no relation between emotional
exhaustion and turnover behavior
Emotional exhaustion \rightarrow Turnover $r=0$

Comparing means

- t-test

- Remember Module 1 and NHST? What does the null hypothesis propose for a t-test?

Null hypothesis:
A statistical test of the hypothesis that
suggests that there is no difference
between specified populations (or no
relation between constructs) and that
any observed difference is due to
sampling or experimenter error.
$r=0$

Null hypothesis:
There is no relation between emotional
exhaustion and turnover behavior
Emotional exhaustion \rightarrow Turnover
$r=0$

Comparing means

- ANOVA
- A t-test is a type of inferential statistic used to determine if there is a significant difference between the means of two or more groups, which may be related in certain features.

