Module 2: Central tendency, shape, and difference in means

MSIR 525

Monday, September 23, 2019

Recap of Module 1 (check list from syllabus; see pages 1-2)

- We learned about the NHST framework
- We developed an understanding of *p*-values and how they can be used to inform evidence-based management decisions
- We compared different types of error that can threaten our inferences and conclusions
 - We also learned how one can attempt to avoid these errors and disclosures that must be given if a study is underpowered
- We contrasted three different research designs (e.g. observational) and two different data collection approaches (e.g., longitudinal)
- We learned about different data sources and data types
- We summarized several types of validity and phenomena that may threaten them

- 9/23/2019
 - Summarizing data (frequency distributions); fitting data (central tendency and shape); interpretation and communication; issues in datasets

- 9/23/2019
 - Summarizing data (frequency distributions); fitting data (central tendency and shape); interpretation and communication; issues in datasets
- 9/25/2019
 - Assess whether or not two means are *statistically* different from each other (i.e., a *t*-test)

- 9/23/2019
 - Summarizing data (frequency distributions); fitting data (central tendency and shape); interpretation and communication; issues in datasets
- 9/25/2019
 - Assess whether or not two means are *statistically* different from each other (i.e., a t-test)
- 9/30/2019
 - Assess whether or not multiple means are *statistically* different from each other (i.e., ANOVA test)

- 9/23/2019
 - Summarizing data (frequency distributions); fitting data (central tendency and shape); interpretation and communication; issues in datasets
- 9/25/2019
 - Assess whether or not two means are *statistically* different from each other (i.e., a t-test)
- 9/30/2019
 - Assess whether or not multiple means are *statistically* different from each other (i.e., ANOVA test)
- 10/2/2019
 - Module 2 recap and software tutorial (R *must* be installed by this date!!)

- 9/23/2019
 - Summarizing data (frequency distributions); fitting data (central tendency and shape); interpretation and communication; issues in datasets
- 9/25/2019
 - Assess whether or not two means are *statistically* different from each other (i.e., a t-test)
- 9/30/2019
 - Assess whether or not multiple means are *statistically* different from each other (i.e., ANOVA test)
- 10/2/2019
 - Module 2 recap and software tutorial (R *must* be installed by this date!!)
- 10/7/2019
 - In-class exercise for credit (i.e., a hackathon)
 - Applying what we learned in M2 to ascertain whether or not a meaningful group difference exists

• Let's get started! 🙂

• Frequency distribution

- Frequency distribution
 - A table or graph that shows each possible score along with the number of times that score was observed in the data.

• Frequency distribution

• A table or graph that shows each possible score along with the number of times that score was observed in the data.

Table 1. Observed Data						
		Job	Рау			
Stress	WLB	satisfaction	satisfaction			
5	8	7	9			
5	8	7	9			
6	2	7	9			
6	2	8	6			
7	2	3	6			
7	4	4	7			
7	5	4	7			

• Frequency distribution

• A table or graph that shows each possible score along with the number of times that score was observed in the data.

Table 1	L. Obs	erved Data	
		Job	Рау
Stress	WLB	satisfaction	satisfaction
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Table 2. Frequency Distribution					
			Job	Pay	
Rating	Stress	WLB	satisfaction	satisfaction	
10	0	0	0	3	
9	0	0	0	0	
8	0	2	1	0	
7	3	0	3	2	
6	2	0	0	2	
5	2	1	0	0	
4	0	1	2	0	
3	0	0	1	0	
2	0	3	0	0	
1	0	0	0	0	
0	0	0	0	0	
Count	7	7	7	7	

• Frequency distribution

 A table or graph that shows each possible score along with the number of times that score was observed in the data.

					пеци	ency Di	SUIDULIOII			
Table 1. Observed Data				Rating	Stress	WLB s	Job satisfaction	Pay Dansington	11-)
Stress	WLB	Job satisfaction	Pay satisfaction	10 9	0	0	JAL	3		
5	8	7	9	8	0			04		
5	8	7	9		Br	0	. QY	2		
6	2	7	9	· VIN	2			0		
6	2	8	6	4	0	1	2	0		
7	2	3	6	3	0	0	1	0		
7	4	4	7	2	0	3	0	0		
7	5	4	7	1	0	0	0	0		
				0	0	0	0	0		
				Count	7	7	7	7		

Table 2 Frequency Distribution

• Frequency distribution

 A table or graph that shows each possible score along with the number of times that score was observed in the data.

- Relative frequency
 - Compared to the (raw) frequency itself, this is a way to make even better sense of observed data

- Relative frequency
 - Compared to the (raw) frequency itself, this is a way to make even better sense of observed data
 - Represents how often a response is observe relative to the total number of responses
 - "What proportion of the respondents gave a rating of 7 for stress?"

• Relative frequency

- Compared to the (raw) frequency itself, this is a way to make even better sense of observed data
- Represents how often a response is observe relative to the total number of responses
 - "What proportion of the respondents gave a rating of 7 for stress?"

Relative frequency = $\frac{frequency \ of \ response}{total \ number \ of \ responses}$

• Relative frequency

- Compared to the (raw) frequency itself, this is a way to make even better sense of observed data
- Represents how often a response is observe relative to the total number of responses
 - "What proportion of the respondents gave a rating of 7 for stress?"

Relative frequency =
$$\frac{frequency \ of \ response}{total \ number \ of \ responses}$$

= $\frac{3}{7}$ = 43%

- Cumulative frequency and cumulative percentage
 - An assessment of the total frequency (percentage) of all categories up to and including the category of interest

• Cumulative frequency and cumulative percentage

• An assessment of the total frequency (percentage) of all categories up to and including the category of interest

Cumulative frequency _{n} =	$frequency_{n} +$	+ cumulative freq	uency _{n-1}

Table 3	Table 3. Frequency Distributions for Stress					
		Relative	Cumulative	Cumulative		
Rating	Frequency	frequency	frequency	percentage		
10	0	0 (0%)	7	1.0 (100%)		
9	0	0 (0%)	7	1.0 (100%)		
8	0	0 (0%)	7	1.0 (100%)		
7	3	.43 (43%)	7	1.0 (100%)		
6	2	29 (29%)	4	.58 (58%)		
5	2	.29 (29%)	2	.29 (29%)		
4	0	0 (0%)	0	0 (0%)		
3	0	0 (0%)	0	0 (0%)		
2	0	0 (0%)	0	0 (0%)		
1	0	0 (0%)	0	0 (0%)		
0	0	0 (0%)	0	0 (0%)		

• Cumulative frequency and cumulative percentage

• An assessment of the total frequency (percentage) of all categories up to and including the category of interest

			Relative	Cumulative	Cumulative
	Rating	Frequency	frequency	frequency	percentage
	10	0	0 (0%)	7	1.0 (100%)
	9	0	0 (0%)	7	1.0 (100%)
	8	0	0 (0%)	7	1.0 (100%)
	7	3	.43 (43%)	7	1.0 (100%)
orecentore	6	2	29 (29%)	4	.58 (58%)
ercentage _{n-1}	5	2	.29 (29%)	2	.29 (29%)
	4	0	0 (0%)	0	0 (0%)
	3	0	0 (0%)	0	0 (0%)
	2	0	0 (0%)	0	0 (0%)
	1	0	0 (0%)	0	0 (0%)
	0	0	0 (0%)	0	0 (0%)

Table 3. Frequency Distributions for Stress

Cumulative percentage_n = percentage_n + cumulative percentage_{n-1}

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 2	Table 1. Observed Data					
		Job	Рау			
Stress	WLB	satisfaction	satisfaction			
5	8	7	9			
5	8	7	9			
6	2	7	9			
6	2	8	6			
7	2	3	6			
7	4	4	7			
7	5	4	7			

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data					
		Рау			
Stress	WLB	satisfaction	satisfaction		
5	8	7	9		
5	8	7	9		
6	2	7	9		
6	2	8	6		
7	2	3	6		
7	4	4	7		
7	5	4	7		

Step 1: Calculate column mean (average)

Average job satisfaction rating = $\frac{7+7+7+8+3+4+4}{7}$ = 5.71

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data					
		Рау			
Stress	WLB	satisfaction	satisfaction		
6	2	8	6		
5	8	7	9		
5	8	7	9		
6	2	7	9		
7	4	4	7		
7	5	4	7		
7	2	3	6		

Step 1: Calculate column mean (average)

Average job satisfaction rating = $\frac{7+7+7+8+3+4+4}{7}$ = 5.71

Step 2: Rearrange observed data (largest \rightarrow smallest)

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data					
		Job	Рау		
Stress	WLB	satisfaction	satisfaction		
6	2	8	6		
5	8	7	9		
5	8	7	9		
6	2	7	9		
7	4	4	7		
7	5	4	7		
7	2	3	6		

Step 1: Calculate column mean (average)

Average job satisfaction rating = $\frac{7+7+7+8+3+4+4}{7}$ = 5.71

Step 2: Rearrange observed data (largest \rightarrow smallest)

Step 3: Identify "high" (i.e., > 5.71) vs. "low" (i.e., < 5.71) scores

- Mean (or median) splits
 - A method used to estimate the number of "high" vs. "low" responses observed in a dataset
 - Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data					
		Job	Рау		
Stress	WLB	satisfaction	satisfaction		
6	2	8	6		
5	8	7	9		
5	8	7	9		
6	2	7	9		
7	4	4	7		
7	5	4	7		
7	2	3	6		

Step 1: Calculate column mean (average)

Average job satisfaction rating = $\frac{7+7+7+8+3+4+4}{7}$ = 5.71

Step 2: Rearrange observed data (largest \rightarrow smallest)

Step 3: Identify "high" (i.e., > 5.71) vs. "low" (i.e., < 5.71) scores

Step 4: Calculate "high" vs. "low" frequencies and percentages

• Mean (or median) splits

- A method used to estimate the number of "high" vs. "low" responses observed in a dataset
- Example: How many people have "high" and "low" levels of job satisfaction?

Table 1. Observed Data					
		Job	Рау		
Stress	WLB	satisfaction	satisfaction		
6	2	8	6		
5	8	7	9		
5	8	7	9		
6	2	7	9		
7	4	4	7		
7	5	4	7		
7	2	3	6		

Step 1: Calculate column mean (average)

Average job satisfaction rating = $\frac{7+7+7+8+3+4+4}{7}$ = 5.71

Step 2: Rearrange observed data (largest \rightarrow smallest)

Step 3: Identify "high" (i.e., > 5.71) vs. "low" (i.e., < 5.71) scores

Step 4: Calculate "high" vs. "low" frequencies and percentages

- Mean, median, mode
 - Represents a simple statistical model of the center of the distribution of scores.
 - A hypothetical estimate of the "typical" score

Table 1. Observed Date					
Table 1. Observed Data					
		Job	Рау		
Stress	WLB	satisfaction	satisfaction		
5	8	7	9		
5	8	7	9		
6	2	7	9		
6	2	8	6		
7	2	3	6		
7	4	4	7		
7	5	4	7		

Calculate column mean (average) Average job satisfaction rating = $\frac{7+7+7+8+3+4+4}{7}$ = 5.71

- Represents the middle score of a set of ordered observations
- When there is an even number of observations the median is the average of the two scores that fall either side of what would be the middle value

Table 1. Observed Data					
		Job	Рау		
Stress	WLB	satisfaction	satisfaction		
7	2	3	6		
7	4	4	7		
7	5	4	7		
5	8	7	9		
5	8	7	9		
6	2	7	9		
6	2	8	6		

- Represents the middle score of a set of ordered observations
- When there is an even number of observations the median is the average of the two scores that fall either side of what would be the middle value

Table 1. Observed Data					
		Job	Рау		
Stress	WLB	satisfaction	satisfaction		
7	2	3	6		
7	4	4	7		
7	5	4	7		
5	8	7	9		
5	8	7	9		
6	2	7	9		
6	2	8	6		

Table 1. Observed Data					
		Job			Рау
Stress	WLB	satisfac	tion	sati	sfaction
5	8	7 (9
5	8	7	Orde	red	9
6	2	7	from		9
6	2	8	to-hi	gh	6
7	2	3			6
7	4	4			7
7	5	4			7

- Represents the middle score of a set of ordered observations
- When there is an even number of observations the median is the average of the two scores that fall either side of what would be the middle value

Table 1. Observed Data					
		Job		Рау	
Stress	WLB	satisfacti	on sa	atisfaction	
7	2	3		6	
7	4	4		7	
7	5	4	Ordered	d 7	
5	8	7	from lo	-	
5	8	7	to-high	9	
6	2	7		9	
6	2	8		6	

• Mean, median, mode

- Represents the middle score of a set of ordered observations
- When there is an even number of observations the median is the average of the two scores that fall either side of what would be the middle value

Table 1. Observed Data					
		Job		Pay	
Stress	WLB	satisfacti	on	satisfaction	
7	2	3		6	
7	4	4		7	
7	5	4	Orde	ered 7	
5	8	(7)	-	low- 9	
5	8	7	to-hi	^{igh} 9	
6	2	7		9	
6	2	8		6	

Calculate column median (mid-point of distribution)

Median job satisfaction rating = 7

• Mean, median, mode

- Represents the middle score of a set of ordered observations
- When there is an even number of observations the median is the average of the two scores that fall either side of what would be the middle value

Table 1. Observed Data					
		Job		Pay	
Stress	WLB	satisfacti	on	satisfaction	
7	2	3		6	
7	4	4		7	
7	5	4	Orde	ered 7	
5	8	(7)	-	low- 9	
5	8	7	to-hi	^{igh} 9	
6	2	7		9	
6	2	8		6	

Calculate column median (mid-point of distribution)

Median job satisfaction rating = 7

Central tendency

- Mean, median, mode
 - Represents the most frequently occurring score in a set of observations
 - Can be bi-modal or even multi-modal

Table 2	1. Obs	erved Data	
		Job	Рау
Stress	WLB	satisfaction	satisfaction
5	8	7	9
5	8	7	9
6	2	7	9
6	2	8	6
7	2	3	6
7	4	4	7
7	5	4	7

Central tendency

- Mean, median, mode
 - Represents the most frequently occurring score in a set of observations
 - Can be bi-modal or even multi-modal

Table 1. Observed Data						
		Job			Pay	
Stress	WLB	satisfaction			satisfaction	
5	8	<u>Г</u>	7		9	
5	8		7		9	
6	2	Ŀ	7		9	
6	2		8		6	
7	2		3		6	
7	4	4	4		7	
7	5	4	4		7	

Calculate column mode

Modal job satisfaction rating = 7

The point is...

- Although we know about these measures of central tendency, we may not be using them to their full potential
- Many of the descriptive statistics that we aware of (e.g., mean) are meaningless if they are not reported in tandem with other important information
- What other important information should accompany the mean...

Variance

- Standard deviation
 - SD is an estimate of the average variability (spread) of a set of observations around the mean
 - Importantly, SD is expressed in the same units of measurement as the raw scores
 - It is the square root of the variance (sqrt[sum of squares/number of values])

Variance

- Range
 - The range of scores is the value of the smallest score subtracted from the highest score

Table 1. Observed Data						
Stress	WLB	Job satisfaction	Pay satisfaction	Pango	_	Highest score — lowest score
7	2	3	6	Range	=	mignest score – towest score
7	4	4	7			
7	5	4	7		=	8 – 3
5	8	7	9			
5	8	7	9		=	5
6	2	7	9			
6	2	8	6			

- Skewness
- Kurtosis

- Skewness \rightarrow a measure of the symmetry of a *frequency distribution*
- Kurtosis

• Skewness \rightarrow a measure of the symmetry of a *frequency distribution*

• Kurtosis

Symmetrical distributions have a skew of 0

• Skewness \rightarrow a measure of the symmetry of a *frequency distribution*

• Kurtosis

Symmetrical distributions have a skew of 0

When the frequent scores are clustered at the lower end of the distribution and the tail points to the higher (more positive) scores, the value of skew is positive

• Skewness \rightarrow a measure of the symmetry of a *frequency distribution*

• Kurtosis

Symmetrical distributions have a skew of 0

When the frequent scores are clustered at the lower end of the distribution and the tail points to the higher (more positive) scores, the value of skew is positive

When the frequent scores are clustered at the higher end of the distribution and the tail points to the lower (more negative) scores, the value of skew is negative

• Skewness \rightarrow a measure of the symmetry of a *frequency distribution*

• Kurtosis

Symmetrical distributions have a skew of 0

When the frequent scores are clustered at the lower end of the distribution and the tail points to the higher (more positive) scores, the value of skew is positive

When the frequent scores are clustered at the higher end of the distribution and the tail points to the lower (more negative) scores, the value of skew is negative

- Skewness
- Kurtosis \rightarrow a measure of the degree

Normal kurtosis = 3

- Skewness
- Kurtosis \rightarrow a measure of the degree

Normal kurtosis = 3

Kurtosis < 3 → Platykurtic (the distribution produces fewer and less extreme values [e.g., outliers] than does the normal distribution)

• Skewness

• Kurtosis \rightarrow a measure of the degree

Normal kurtosis = 3

Kurtosis < 3 → Platykurtic (the distribution produces fewer and less extreme values [e.g., outliers] than does the normal distribution)

Kurtosis > 3 → Leptokurtic (this distribution produces more extreme values [e.g., outliers] than the normal distribution)

Threats to descriptive statistics

- Missing data
- Outliers
- Range restriction

Threats to descriptive statistics

- Missing data
- Outliers
- Range restriction

1. Missing Completely at Random (MCAR)

2. Missing at Random (MAR)

3. Missing Not at Random (MNAR; this type of missingness cannot be ignored)

See

https://www.theanalysisfactor.com/missing -data-mechanism/ for an explanation of each type of missing data.

Interpreting descriptive statistics

• As previously mentioned, descriptive statistics should be reported in tandem with other descriptive statistics

Interpreting descriptive statistics

- As previously mentioned, descriptive statistics should be reported in tandem with other descriptive statistics
 - The mean is not informative without reporting the corresponding SD
 - The raw frequency is not informative without reporting the corresponding relative frequency
 - Etc.

Interpreting descriptive statistics

- As previously mentioned, descriptive statistics should be reported in tandem with other descriptive statistics
 - The mean is not informative without reporting the corresponding SD
 - The raw frequency is not informative without reporting the corresponding relative frequency
 - Etc.
- Descriptive statistics are the gateway to more sophisticated, in-depth analyses
 - Imagine that you observe low levels of job satisfaction among female employees. The next question that might need to be addressed is, "Why are females experiencing low levels of job satisfaction?"

- *t*-test
 - A t-test is a type of inferential statistic used to determine if there is a significant difference between the means of two groups, which may be related in certain features.

- *t*-test
 - A t-test is a type of inferential statistic used to determine if there is a significant difference between the means of two groups, which may be related in certain features.
 - Essentially, a t-test allows us to compare the average values of the two data sets and determine if they came from the same population.

- *t*-test
 - Remember Module 1 and NHST? What does the null hypothesis propose for a t-test?

Null hypothesis:

A statistical test of the hypothesis that suggests that there is no difference between specified populations (or no relation between constructs) and that any observed difference is due to sampling or experimenter error.

r=0

- *t*-test
 - Remember Module 1 and NHST? What does the null hypothesis propose for a t-test?

Null hypothesis:

A statistical test of the hypothesis that suggests that there is no difference between specified populations (or no relation between constructs) and that any observed difference is due to sampling or experimenter error.

r=0

Null hypothesis:

There is no relation between emotional exhaustion and turnover behavior

Emotional exhaustion \rightarrow Turnover r = 0

- *t*-test
 - Remember Module 1 and NHST? What does the null hypothesis propose for a *t*-test?

- *t*-test
 - Remember Module 1 and NHST? What does the null hypothesis propose for a *t*-test?

- ANOVA
 - A t-test is a type of inferential statistic used to determine if there is a significant difference between the means of two or more groups, which may be related in certain features.